
 Thomas B Winans and John Seely Brown © 2005 |

1

New Perspective On Web Services

Web services are thought of as both foundational to the next technology architecture and
as an extension of the IT infrastructure that is currently in place. When will IT

departments and infrastructure vendors who view web services as a means to extend
enterprises as we know them today see web services instead as the organizational and
technical enablers that they are? When will IT and infrastructure vendors admit that the
only way to effectively leverage web services to create a business entity that can operate

on a global basis is to embrace a new point of view?

Web services represent a paradigm shift unlike others we have seen in the technology market in
the past 20+ years.

As we consider paradigm shifts from mainframe-based, client/server, distributed object and
component-based computing, we observe that the boundary between business
goals/objectives/strategies and technical provisioning of the same have not been impacted by

them: these paradigm shifts were technology-focused only
and left the business model hard-wired into software
applications. Best of breed applications, integrated as best
we could with enterprise application integration technologies
proved only marginally successful in enabling business
entities to reclaim ownership of business models and ability
to adeptly change them. Infrastructure drove applications
and the ways they provisioned functionality in a way that
was unaccommodating of business change.

Web services enable greater visibility to and traceability of
business functionality from the business model to its

technical implementation that, in turn, may be viewed agnostically from a technology point of
view. Consequently, application architecture and infrastructure can be positioned to drive
business models even less. We have learned over the past years that separation of “business”
rules from application code increases a company’s ability to change in response to the needs of
special partnerships or industry transitions. Web service fabrics, emerging technologies that
enable management of web services, refer to business and operational rule sets as policies and
use them as constraints on the ways that web services are combined to provision business and
operational functionality. The ways in which policies are used to factor business and operational
intelligence out of technology components enable a business to flexibly modify its business model
and supporting technology without the need to modify code in every case. Policies enable change
to be localized and systematically managed without compromising agility. A business that
positions itself to move agilely yet systematically positions itself to rapidly evolve and/or
transform itself through the development of new business capabilities.

Leveraging web services to a business entity’s full advantage requires the business entity to view
web services as a kind of inflection point. An inflection point represents a time of turbulence and
instability. The web services market certainly is unstable at present.

There are – by our count of vendors that we would consider significant players in the market –

 Thomas B Winans and John Seely Brown © 2005 |

2

more than 35 vendors who offer software and hardware products that serve as components in a
web services platform. While only a small number of products are required to put together a web
service platform, the fact remains that the buyer must research, purchase, and deploy products
from multiple vendors. In some cases it is necessary to compensate for functionality that does
not yet exist.

To further underscore the point, we note that web service standards and standards proposals are
in a state of flux. Proposals that have become bona fide standards have not been quickly adopted
(e.g. UDDI is viewed as a critical web services standard, yet UDDIv3 has not been quickly
adopted, and companies are uncertain of its value in light of the fact that they cannot look at
their own software assets and point to a large enough number of services significant to warrant
management using some form of design or runtime registry).

So why should CIOs adopt a web service-based technology strategy now? Or – more
appropriately – what will CIOs be unable to do if a web service-based technology strategy is not
adopted?

Chief among the goals to be realized through adoption of a web services strategy is the ability to
position the enterprise to rapidly create new capabilities – whether within or outside of what we
think of today as the enterprise. The near universal support for use of XML as the common
syntax for message exchange and the use of http as a common transport protocol provides
enterprises with the abilities to commoditize application technology integration within an
enterprise and collaborate more easily with internal as well as external business partners. These
abilities enable business institutions to both tactically optimize their margins and strategically
evolve their business models. Common syntax and protocol are required to: rapidly specialize
business interactions without compromising the ability to systematically manage interactions in
general; clearly communicate and coordinate business interactions at human and technology
levels so that business goals can be traced to technology as necessary, and the value
propositions of business relationships can be effectively measured and monitored; and leverage
current capabilities to create new capabilities that span institutional boundaries. These, in turn,
empower business institutions with the ability to introspect and reshape themselves as a function
of their desire to innovatively seek out opportunities to create new revenue streams and more
rapidly position themselves to be seen as and participate in the business flows of a growing and
global market.

But simple-minded adoption of web services is no silver bullet – technology never is. As business
institutions strive to realize the goal of more rapid creation of new capabilities using web
services, the necessity to question the shape of a business model, the ways that business should
be conducted, and the ways that web services should be leveraged should not be surprising. For
example:

 Automation of business processes within an enterprise has been strongly influenced by
the business application infrastructure that the enterprise selects and deploys, and is
therefore limiting with respect to multi-party business interactions that span institution
boundaries. Is this by necessity? Or has this become the norm because it is a path of
least resistance?

 Consider the way that enterprise applications are made to interoperate. Do enterprise
application integration platforms we commonly find in enterprises today represent a kind
of lowest common denominator collection of capabilities that we would expect to find in
all business software platforms? If so, and the complexity that businesses see in their
platforms today is the norm, how can businesses create new capabilities rapidly? Are
businesses condemned to throw bodies that cost less at developing new software

 Thomas B Winans and John Seely Brown © 2005 |

3

functionality and hope that agile software development one day pans out?

 Consider an enterprise, as it exists today, as a centralized locus or hub of control. Is that
model realistic given what appears to be a growing requirement to rapidly construct and
tear down virtual enterprises as communities of practice that interact to achieve some
common business goals and then disband?

Peter Drucker observes that "the problem in times of turbulence is not the turbulence; it is acting
with yesterday’s logic." The goal to more rapidly create new business capabilities in global
contexts is a formidable goal. Simply applying/extending “yesterday’s [enterprise integration]
logic” to adoption of web services without revisiting the foundation of that logic is ill advised. We
believe there are two points of view one could take toward web service adoption that will be
helpful in determining a go-forward position vis-à-vis adoption of web services as a business
strategy component.

The first, which we call in-out, is the commonly held point of view (pov) arguing that web
services should be implemented by extending what is currently inside today's enterprise outward
to support multi-party business interactions that span enterprise boundaries. The in-out pov is
one that accepts web services as a technology evolution from the inside of enterprises (as we
know them today) out, permitting co-existence of enterprise assets like J2EE EJBs and Microsoft
ActiveX components as manageable functional elements. It encourages adoption of web services
as a means to encapsulate complexity rather than eliminate it. It does not challenge traditional
thinking about enterprise boundaries – and it encourages the agile implementation of new
business models in global economies. It represents the belief that current business practices and
operational models will extend beyond the enterprise when necessary, and an expectation that IT
will be able to dress up its infrastructure in some way that will enable the business to meet global
demands that the business now considers to be strategic. It is a commonly held bottom-up pov.

The second pov, which we call out-in, argues that existing application and integration
infrastructure will not scale outward in a cost effective way. The out-in pov requires business to
be viewed from a business capability or service only pov to eliminate many of the challenges that
heterogeneous IT infrastructure causes, and to push beneath a standard interface layer the
technologies that cannot or should not be standardized. One potential result of assuming such a
viewpoint is the ability to eliminate certain infrastructure components. Homogeneity and
elimination of infrastructure components simplifies the platform according to this pov. Another
potential result is that how IT provisions services to employee or community-of-practice
desktops/PDAs can be rethought (it is no longer necessary to deliver a vendor’s “application” to
either of these). Another is that business service development could be accomplished as a
combination of raw material web service development and composite service-based application
assembly – but the future applications more and more will be composite and web services based.
It is very much a top-down pov that has been broadened to scale beyond traditional institutional
boundaries.

The out-in pov seems considerably risky relative to the devil-you-know in-out pov UNLESS you
see web services as an inflection point where business model, organization, and technology
converge. Web services can be considered a means to transition a business entity in its entirety
to be service-based (out-in) rather than simply as a means to optimize costs at an IT bottom-line
(in-out). One can argue that either pov can be adopted to transition to being web service-based.
We would concede this point. However, we would do so only as we observe that the cost of
taking the in-out pov represents business opportunities that would be lost en route, and that
losing such opportunities could prove fatal.

This paper introduces the out-in pov by examining limitations of the more common in-out pov in
the context of global enterprise enablement. It does this first by considering technical limitations

 Thomas B Winans and John Seely Brown © 2005 |

4

of enterprise infrastructure that is being extended by a web services layer. Next, it examines out-
in implications on architecture, and on organization. Finally, it examines the benefits and
detriments of the point of view.

The out-in pov is considered new in this paper because it takes a technology agnostic view to
whatever is below a standards-based web services interface boundary – without denying the fact
that legacy systems will exist for the foreseeable future and must be included as a component in
any architecture strategy. One can argue that Web Service proponents take this technology
agnostic position already. However, we believe few if any vendors or enterprises have given
more than intellectual assent to the value of taking such a view.

1. TECHNICAL DISTINCTIONS BETWEEN OUT-IN AND IN-OUT

There are two points of view an architect could take when architecting a web service-oriented
platform: (a) one in which the platform manages the life cycle of a web service – the only
functional component that is exposed; and (b) one that extends an existing architecture to
manage web services in addition to other types of functional components.

(a) represents a “purist” point of view (pov) on a web service-oriented architecture, and we label
it out-in. Web services represent the only functional component that is created and managed in
this architecture. Architecture objectives justifying this pov include avoidance of architecture
erosion and drift.

Perry and Wolf discuss architecture erosion and drift in Foundations for the Study of Software
Architecture [2], both of which are common architecture problems. Erosion is due to violation of
architecture over time. Drift is due to insensitivity to the architecture as it was originally
designed. Both result in brittleness and unnecessary increased complexity of systems if not
appropriately managed. Both can be minimized with respect to technology if a web service-
oriented architecture is kept simple by focusing it on web services only.

The out-in pov represents the outside-in and top-down view of web service-based applications
built on a web service-oriented platform. It acknowledges that there are numerous technologies
with which web services can be constructed and deployed (e.g. a variety of technology stacks
can be used), but it avoids making these technologies and their complexities components that
must be managed directly by the web services-oriented platform. The ultimate goal of taking this
pov is to ensure technology agnosticism above and including a web services standards-based
interface boundary.

The out-in pov is based upon conjecture that what the industry considers to be good enterprise
architectures today are not suitable to meet demands of next generation enterprises that interact
using web services.

(b) represents the pov called in-out because it extends technologies already in use within
enterprises today to manage the life cycle of web services. “Extends” implies that the
architecture does not limit its functional components to web services only.

The in-out pov represents a bottom-up view of web services. Web services are constructed using
EAI, J2EE, database and other technology stacks, and these technology stacks must participate in
web service life cycle management just as they participate in the management of other
components developed using them (e.g. A J2EE technology stack must manage web services just
as it must manage EJBs).

The in-out pov is based upon conjecture that what the industry considers to be good enterprise

 Thomas B Winans and John Seely Brown © 2005 |

5

architectures today can be extended to manage the web service life cycle, and that these
architectures will prove suitable to meet demands of next generation enterprises that interact
using web services.

To better understand the differences between the two povs, we consider three areas where there
is architectural difference between them: transaction management, exception handling, activity
granularity, and orchestration.

1.1 Transaction Management

The short-lived unit of work that we commonly see inside the enterprise today is referred to as
an XA-compliant transaction [3]. It is defined as a set of software activities that are executed as
a unit to cause a change of state in the transaction execution environment. Some of these
activities have persistent side effects and have ACID properties:

 (Atomic) Activities with side effects either succeed or fail together. When failure occurs,
effects of all activities should be undone, and the state of the execution environment
should be rolled back to its previous state;

 (Consistent) Unit of work activities transition the business from one consistent state to
another;

 (Isolated) Resource changes effected by unit of work activities are not shared until the
unit of work completes; and

 (Durable) Once a unit of work completes, its effects are guaranteed despite any business
infrastructure failures.

It is desirable that a long-lived unit of work also should have ACID properties – though it is not
possible to make it do so without relaxing the definitions of these properties:

 (Atomic) It may be impossible or undesirable to roll back all the side effects of a long-
lived unit of work. A long-lived unit of work defines the essential activities for which
compensation plans must be defined/executed if failure conditions occur while potentially
still leaving some side effects in existence.

 (Consistent) Unit of work activities transition the business from one consistent state to
another; roll-back restores a consistent state, though not necessarily the state the
execution environment was in at the time the long-lived unit of work started.

 (Isolated) Resource changes effected by unit of work activities are not shared until the
unit of work designates this information as sharable and/or successfully completes.

 (Durable) Once a unit of work completes, its effects are guaranteed despite any business
infrastructure failures.

The duration of a unit of work greatly impacts how each of the ACID properties like atomicity and
isolation can be implemented. If the duration of a unit of work is short-lived, and assuming
resources in the unit of work are XA-compliant, then operating system concepts like critical
resource locking can be applied to ensure concurrently executing units of work do not share
transient information. If the duration is long, an alternate strategy to keep intermediate results
private is necessary since, as with operating systems, it is costly to lock critical resources for
extended periods. If all resources managed in a unit of work implement a standard unit-of-work

 Thomas B Winans and John Seely Brown © 2005 |

6

interface like X/Open’s XA interface, then the atomic property can be implemented as 2 Phase
Commit. If resources do not conform to such a standard interface, then an alternative way to
commit or rollback unit of work effects must be implemented.

ACID properties are often considered together with granularity of unit of work activities and the
order in which these activities can be performed. Granularity of work is important because it can
influence things like unit of work duration and resource locking. Order of execution is influenced
by business rules and constraints on information manipulated in the unit of work. In the past,
order of execution was hardwired in 3/4GL code; but it can be treated more as data today with
the advent of work- and process-flow technologies.

Because the concepts of ACID, granularity of work, and order of execution are interlaced, we
refer to all of them using the acronym UoW. And we use UoW as a foundation for evaluating the
in-out and out-in povs on work as it can be accomplished using Web Services.

The following definition is needed for subsequent discussion:

A business interaction is a set of coordinated business activities performed to
realize a specific business objective. A business interaction is a UoW. A business
interaction activity may be another business interaction.

The concept of work as a collection of activities having ACID properties is common to both in-out
and out-in. However, there are tremendous differences in the ways that work is defined, and in
the environments in which work is conducted. Differences are summarized in figure 1:

Figure 1

Enterprise applications commonly are constructed to interact with relational databases
transactionally. Paradigm shifts in computing like Client/Server Computing and Object Oriented
Programming have transitioned us from building monolithic applications to developing distributed
object- and component-based enterprise application systems. But these paradigm shifts have not
affected the definition or implementation of an application UoW as we have come to know it in
any fundamental way. A UoW, even in an application server-enabled enterprise context,
continues to be implemented as a short-lived, message-oriented, XA-compliant (possibly nested)
transaction. It is this characterization of UoW that equates to the in-out UoW.

An application server uses a TP Monitor to manage the life cycle of a transactional application

 Thomas B Winans and John Seely Brown © 2005 |

7

UoW that may be distributed across traditional application boundaries, and over a heterogeneous
set of databases, queues, or message transports. The TP Monitor's purpose is to ensure that the
UoW processes completely or, if an error occurs, appropriate actions are taken as follows:

(Atomic) Using techniques like journaling (before/after snapshots), the TP Monitor manages
(commit/rollback) state in XA-compliant persistent stores.

(Consistent) The TP Monitor ensures that all transactional UoW activities represent a correct
transformation of the transactional system that it manages. It ensures that the UoW as a whole
satisfies all constraints on the transactional system, else it does not permit the UoW to
successfully complete.

(Isolated) The TP Monitor coordinates work across Transaction Contexts and the Transaction
Objects (or Resources) they manage to ensure that transaction-related information is not visible
outside of Transaction Context boundaries until transactions are successfully completed. The TP
Monitor uses techniques like short-term critical resource locking to implement isolation.

(Durable) The TP Monitor uses logging to ensure that changes to a system made in a committed
transaction are not lost even if the servers on which it and the transactional system are running
crash afterwards.

An out-in UoW is almost the antithesis of an in-out UoW. It is a business interaction that is long-
lived, document-oriented, nested, and not XA-compliant. While an in-out UoW is designed to be
automated, an out-in UoW involves both human and system participants. An in-out UoW is
managed within enterprise boundaries or in special (IP tunneling1) cases that extend the
enterprise boundaries, but an out-in UoW must be managed across enterprise boundaries as the
normal rule.

ACID properties in an out-in UoW must be supported as follows:

(Atomic) Failure must be dealt with in a compensational manner since there is no analog to XA
compliance in out-in. Compensation refers to a set of activities that either reverses the effects of
essential interaction activities performed up to a point of failure and causes the interaction to
halt, or corrects the problem that triggered the exception and causes the interaction to continue.
The long-lived nature of out-in interactions underscores the importance of capturing interaction
state and goals so that if necessary a human being can understand what has transpired up to
and including interaction failure, and to determine how best to fix the problem causing the
exception condition.

(Consistent) Each interaction must be expressed in the form of goals the interaction is to achieve,
together with participant contracts that enable participant coordination. Goals must be structured
as business rules and constraints so that consistency of state may be maintained, and so that
participants, whether process or human, can use them to know how to participate in the
interaction.

(Isolated) Interaction content and state must be managed so that it is not inappropriately shared
before the outmost interaction completes2. There is potentially a need to declare within the

1 A technology that enables one IP network to send its data via another IP network's connections. Tunneling works by
encapsulating a network protocol within packets carried by the second network.
2 Services invoked within an interaction may actually be interactions themselves (analogous to a nested OLTP
transaction).

 Thomas B Winans and John Seely Brown © 2005 |

8

definition of an interaction when certain information can be shared.

NOTE: While it will be possible to use existing enterprise applications to provision
Web Services, it will be necessary to modify them or to develop middleware
layers to encapsulate them if intermediate interaction state is to be kept private
until an interaction completes. These applications do not organize/partition the
information that they manipulate by services. Consequently, information may be
shared to other application components (e.g. using stored procedures and
triggers) in a way that violates isolation principles. Completely addressing this
would require a full rewrite of applications used to provision services (generally
considered to be impractical if possible at all).

(Durable) Durability of an out-in UoW means that changes made to the execution environment
by an interaction that successfully completes must be guaranteed despite any business
infrastructure failures. Aside from business-related changes, this includes state changes of the
interaction UoW itself.

Durability also means that completed interaction results must be reliably communicated to all
interaction participants who wish to have them, for whatever reason. If these results cannot be
reliably communicated, then compensatory activities must be triggered to roll the interaction
back. NOTE: Infrastructure that oversees the interaction cannot be obligated to guarantee that
participants successfully process interaction results since results might not be processed on a
timely enough basis (e.g. they could be processed on a batch basis).

The differences in short- and long-lived UoWs illustrate that the infrastructure used to manage
in-out UoWs is not designed to meet the requirements of out-in UoWs. In-out infrastructure is
designed to manage a UoW and invoke exception management after a fault occurs to
automatically restore state to what it was before the UoW started. Out-in infrastructure must be
designed to manage exception management, implemented in code or through human mediation,
as the UoW is in process.

1.1.1 EXCEPTION HANDLING

When the phrase “exception handling” is mentioned in software technology-related conversation,
it usually references managing faults within code. Software developers raise an exception in their
code when some fault occurs – and an exception handler (software) catches it and attempts to
roll back the effects of work performed from the start of a unit of work until the point the
exception was raised. In the case of an XA Transaction, rollback is performed with the help of a
TP Monitor. Without a TP Monitor, software developers must develop their own rollback
mechanisms.

The exception usually includes some kind of exception identifier and brief text that attempts (if
you’re lucky) to explain what went wrong and why to a human at some console or using some
dialog box. It may include additional information that software might use within the context of
work rollback, but most of the time information packaged in an exception is logged to some
system file as a record that the software system noted an exception and took some
corresponding action (even if the only action that it took was to write the exception to a log file).

The distinction between out-in and in-out with respect to exception handling is that exceptions
cannot by default simply be rolled back automatically in an out-in pov as they are in an in-out
pov. Long-lived business interactions may occur over months or even years. Rolling such
interactions back might be impossible – or, were rollback possible, might not be desirable.
Further, capturing in detail the steps necessary to compensate for a fault in a long-running

 Thomas B Winans and John Seely Brown © 2005 |

9

interaction may require the help of a human being – not just to read after-the-fact an
explanation from a software developer about a problem that an application system encountered
and reported, but to participate in problem resolution at the business level all the way to a
technology level as necessary. According to the in-out pov, it is acceptable to raise an exception,
roll back work, and tell someone (human or log) that work it attempted to do could not be done.

1.2 Activity Granularity

Enterprise applications manage their own state and usually make state visible through an
application-specific front-end (sometimes graphical, sometimes programmatic) user interface.
When such applications are integrated, integrations may be implemented as follows:

 Messages are fine-grained packets of information that contain only the data and subset
of application state each communicating application requires to map the message into its
own context. These information packets are exchanged between communicating
applications to realize real- or near real-time application integration.

 Message structure is formed by generalizing data structures from each application being
integrated so that they can be semantically mapped to application specific data
structures as required.

 The order in which messages are sent is determined by the application that is assigned
the role of master in the integration.

 Messages are delivered between applications through a messaging framework that is
implemented as a direct point-to-point API integration, a queuing framework, or as
object messaging or EAI frameworks. Order of delivery is codified in the form of a
procedural script that is managed by the messaging framework.

 Exception messages that occur due to technical failures in such communications include
information from all communicating applications together with infrastructure-related
failure data so that application-knowledgeable technologists can debug and problem
solve.

 Exception messages that occur due to business failures are communicated to a business
analyst/specialist through some form of application inbox or workbench (the user
interface) so that business issues may be addressed.

Application messages sometimes are called documents because they are rendered using XML.
However, the kind of information packet exchanged in application-to-application integrations is
not the kind that is exchanged in multi-party business interactions, nor could it be for the
following reasons:

 All parties involved in an interaction do not use the same enterprise applications.
Exchanging messages between disparate applications to support interactions with parties
>> 2 is an n2 problem that quickly becomes unmanageable and unaffordable to
implement at an out-in scale. Applying the logic that “there are only so many (read as
‘some reasonably small and finite number of’) applications that must be integrated” to
this n2 problem is flawed reasoning once application versions and upgrade strategies are
considered.

 Full documents (e.g. purchase orders, mortgage and legal documents, faxes and financial
trades) are exchanged in multi-party business interactions, as compared to application

 Thomas B Winans and John Seely Brown © 2005 |

10

and object messages exchanged in enterprise application integrations. In many cases,
business analysts must legally provide data to an interaction using specific documents
and forms if the business enterprises they represent are to be held accountable for their
participation. In other cases, communities of practice simply choose to interact with
standardized forms to minimize training and limit errors.

 Application messages do not contain full interaction state (since applications maintain
this state), whereas interaction documents do. Improvisational contributions to the
interaction, as well as exception management would be, at best, difficult without context
and state information.

The coarse-grained information that includes interaction context and state exchanged in out-in
interactions is referred to as an interaction document because there is a direct correlation
between this type of information set and the type managed by people in the process of
conducting business. The gap between a message and a document may be referred to as an
impedance mismatch3. A relatively significant investment would be required by enterprise
application and application integration vendors to address this mismatch since doing so equates
to grafting a business document model onto an application message-based document model, and
localizing and isolating application data and process models.

The in-out pov of Web Services does not generalize well beyond enterprise boundaries because
of the cost implied to retrofit service- and document-oriented thinking onto applications not
architected with services in mind.

1.3 Orchestration

Business entities obviously make different choices concerning the technology and application
infrastructure that they use to provision the functionality required to conduct business. While
many business functions performed by these businesses are the same, implementations of these
functions differ at process/task and data-entity levels because of the application and technology
choices that have been made.

To coordinate a multi-party interaction from an in-out pov, it is necessary to build a collection of
enterprise application integrations for all partners that must communicate. This means it is
necessary to expose the details of processes embedded in participants’ applications, together
with data structures that must be reconciled in order to communicate through the integration. An
integration for each pair of communicating applications must be built and maintained as
participants make changes to their infrastructure, and as participants come and go.

The in-out pov forces participants to build point-to-point application integrations or to adopt
canonical process and data models in order to participate in multi-party interactions. In practice,
getting agreement at a canonical data structure level is not as formidable a task as getting
agreement at a canonical process level (unless agreement comes at a very high level) since the
latter implies the former and requires the development of additional middleware (e.g. adapters)
to reconcile process-specific differences.

The out-in pov stipulates that there must be agreement upon interaction outcome, but
agreement to adopt a common process to realize this outcome is not required. Outcome and the

3 Impedance mismatch is a problem in electrical engineering that occurs when two transmission lines or circuits with
different impedances are connected. This can cause various losses and noise. In programming terminology, it refers to
the attempt to connect two systems that have very different conceptual bases, a common example being use of a SQL
database from an object oriented program.

 Thomas B Winans and John Seely Brown © 2005 |

11

ways in which the outcome may be realized are separated based upon the beliefs that processes
are enterprise implementation specific and, if propagated beyond enterprise boundaries,
implementation details will severely limit the manageability and scalability of interactions as
participants come and go.

Agreement on interaction outcome is expressed in the form of an interaction document that is
used to coordinate participants as a function of constraints on the interaction. The interaction
document captures interaction context and state, constraints and business rules that define
interaction goals and are used to measure progress toward realizing those goals, contracts that
participants must fulfill to realize interaction goals, and business content.

Constraints can be used to represent entire families of procedurally expressed business and data
collection processes, where the word family connotes procedurally scripted processes that all
produce the same business results regardless of enterprise applications and technology specifics
used to produce them. Constraints, though nondeterministic, can be bounded so that they can be
used to realize independence from business and data collection process specifics prescribed by
provisioning enterprise applications. This circumvents the need for all business interaction
participants to agree to a specific process at the level of fine-grained activities. And constraint
satisfaction can be used to support various models for participating in an interaction. For
example: the consequences of the constraint satisfaction could be published in the form of
events to subscribing participants (kinds of event listeners), thus triggering participants to take
action.

The in-out pov of Web Services is more application or process-centric than outcome-centric,
limiting its scalability to the enterprise. The out-in pov requires agreement upon interaction
outcome, but agreement to adopt a common process to realize this outcome is not required. Out-
in interactions are enterprise application agnostic, making it possible to avoid provisioning multi-
party interactions using point-to-point application integrations.

2. ARCHITECTURE IMPLICATIONS OF OUT-IN

The conjecture that the in-out pov will not scale to meet out-in objectives is important to
consider as we move toward development of a service-oriented architecture for Web Services. It
underscores the thesis that Web Services represents a significant technology discontinuity, not
simply a trend that can be explained in terms of technology that we currently have and use. The
concepts of unit of work, work granularity, and orchestration (which we have collectively labeled
UoW) provide us with a means to evaluate in-out and out-in povs on Web Services.

The table below draws from discussion given in the previous section to compare and contrast the
in-out and out-in povs:

Table 1 -- Differences between In-Out and Out-In

 In-Out Out-In

UoW context The UoW is connection oriented.
The in-out pov forces participants
to build point-to-point application
integrations or to adopt canonical
process and data models in order
to participate in multi-party
interactions.

The out-in pov stipulates that there must
be agreement upon the outcome of an
interaction, but not an agreement on the
process to realize that outcome. In this
sense, the out-in UoW is business
context and oriented.

UoW point of control There is usually only one TP
Monitor that manages a single

There is no single point of control
through which interactions may be

 Thomas B Winans and John Seely Brown © 2005 |

12

system of transactional
resources.

coordinated. The locus of control moves
from a closed enterprise, having a CIO
as final authority, to a managed,
distributed business exchange through
which business interactions are enabled
as services.

UoW duration Transactions are short-lived so
that locking of critical resources is
minimized.

Interactions are long-lived and
inherently involve multiple parties. A
technology fabric weaving business
processes, services, documents and
people seamlessly together is required.

Focus must shift from OLTP to long-
lived, loosely coupled atomic interactions
with compensatory semantics. This
means that our understanding of
performance, scalability, and other
attributes we mellifluously label “ilities”
will necessarily change.

Locking critical resources for the
duration of a long-lived UoW would be
unacceptable.

UoW structure The structure of a transaction (its
nesting, its ordering of activities,
its exception and failure handling)
is a direct function of enterprise
application and database
specifics.

UoWs are fine-grained and
contain activities expressed using
application and/or database
programming interface levels.

All participants in a multi-party
interaction do not use the same
application and technology infrastructure
– so it is unreasonable to assume that a
single transaction could be pre-
structured to properly function across all
participants’ infrastructure.

UoWs are business process focused and
are designed to exchange information in
the form of documents that represent
the type of information that human
beings would exchange if manually
executing the business process.

ACID restrictions The TP Monitor is dependent
upon knowing server system
specifics so that it can implement
ACID (e.g. it must be able to
detect transactional resource
failures in order to support
durability).

All resources that are to be
transactionally managed must be
XA-compliant.

Commit/rollback is managed in
short time periods using 2-phase
commit over XA-compliant
resources.

Enterprises will not expose their
infrastructure to be managed by
someone outside of their enterprise
boundaries. The in-out form of ACID
cannot be implemented in an out-in
context.

Some resources to be managed in an
out-in UoW may not be XA-compliant, so
all must be assumed to not be.

Commit/rollback is managed in long time
periods over non XA-compliant
resources, implying the need for
compensation and human mediation.

TP Monitor restrictions There usually are restrictions
placed upon the implementation
of a TP Monitor that are
programming interface (thus

There is no accepted programming
language or programming paradigm
used to coordinate business interactions
in and between enterprises.

 Thomas B Winans and John Seely Brown © 2005 |

13

programming language) specific.
In the J2EE world, this interface
is known as the Java Transaction
API, or JTA. Conformance to this
interface enables an interface-
compliant TP Monitor of choice to
be plugged into a J2EE
application server.

Web Service specifications (e.g. WS-
Transaction and related specifications)
do not make provision for TP Monitor
access outside of an enterprise
boundary. Instead, they stipulate that
compensational semantics must be
supported.

Exception
management

Transaction exception handling is
mostly handled in code. It is
infrequent that a human would
ever be involved in transaction
exception management since this
suggests critical enterprise
application resources could be
kept locked for unacceptably long
periods of time.

Exception management will be handled
both by humans and by software. The
duration of an interaction and the fact
that human beings will be involved in
resolving exceptions make it impossible
to use traditional enterprise
infrastructure and techniques to manage
out-in UoW business errors and
exceptions.

Human beings can improvisationally
participate in handling business
exceptions, providing the opportunity to
make corrections in line, potentially
avoiding the need to rollback and restart
interactions when failures occur.

Improvisation enables loosely coupled
organizations to learn by more quickly
and effectively capturing and codifying
domain knowledge needed to automate
business interactions.

Development and
Management Tools

Traditional IDEs will be extended
to enable development of
enterprise web services that
integrate with workflow,
application server, integration
and TP Monitor infrastructure.
Focus will remain on short-lived
UoWs.

The kinds of design time and runtime
services needed to support long-lived
loosely coupled asynchronous
transactions with compensatory
semantics must dramatically expand. A
(distributed) business level operating
system that understands different kinds
of UoWs, different levels of guaranteed
performance and security, different
levels of predictability and ways to
manage latencies, different degrees of
human mediation, and so on, will be
needed. This, in turn, will necessitate a
new class of development IDE.

The differences between the two povs lead to a conclusion that an out-in pov cannot be
provisioned with the kinds of in-out technology architectures we see in enterprises today, which
implies the following:

 A new architecture will be required to manage an out-in UoW that supports: (1) a
compensation-based commit protocol as a means to roll back the effects of interactions if
they fail; (2) document centricity; and (3) a way to orchestrate interactions in a way that
easily scales as interaction participants, with their unique business and data-related
processes, come and go. This new architecture will impact the enterprise application

 Thomas B Winans and John Seely Brown © 2005 |

14

market, the way vendors construct their application products, and the way that
enterprises develop business applications in the future.

 A new technology fabric will be required to manage the web service-oriented composite
application runtime.

 A new development environment will be required to develop web service-oriented
composite applications and package them for deployment.

 Traditional IT norms will be challenged.

2.1 New Way to Architect

2.1.1 COMPENSATION AND EXCEPTION HANDLING

Atomic OLTP transactions are important building blocks for Web Service implementations within
an enterprise, but they are insufficient for comprehensively managing and coordinating them
because Web Services may be long- as well as short-lived. AND since some resources to be
managed in an out-in UoW may never be XA-compliant, all must be assumed to not be. So an
alternative to an entirely automated 2-phase XA-compliant rollback/commit must be provided to
manage long-lived UoW errors and exceptions. This alternative, called compensation, represents
the ability to undo selected side effects of a long-lived Web Service-based UoW when failure
conditions occur so that the interaction state may be made consistent.

Web Service compensation plans will be implemented in the form of compensation handlers,
which is similar to how exception and error management is implemented in 3GL/4GL
programming languages (e.g. Java, C++ and SQL). However, unlike its programming language
counterparts, a compensation handler must be implementable in two ways: (1) as part of the
interaction definition, and (2) improvisationally/dynamically.

Some business errors and exceptions can be anticipated at interaction design time, so it must be
possible to develop compensation handlers when an interaction is defined4. But it would be
fallacious to assume all business exceptions could be known in advance, so it is also important to
be able to implement compensation plans and make corrections in line while an interaction is
running. To support this more dynamic and improvisational form of compensation, it must be
possible for both human beings and processes to browse and manipulate interaction state,
business documents, and business error and exception conditions as errors or exceptions occur,
rather than afterward.

In-out UoW error and exception handling usually occurs after an error or exception is detected
and execution environment state is rolled back to what it was just before the UoW started. This
type of exception handling would make exception management difficult to impossible for long-
lived UoWs: it may not be possible to restore state to what it originally was before a long-lived
UoW started. Enabling human beings to improvisationally participate in handling business
exceptions provides the opportunity to make corrections in line, potentially avoiding the need to
rollback and restart interactions when failures occur. And, in some sense, the ability to improvise
allows the new seamless enterprise to learn by more quickly and effectively capturing and
codifying domain knowledge needed to automate business interactions within a loosely coupled
community of practice.

4 Emerging standards for Web Services (e.g. BPEL4WS) recognize and support this.

 Thomas B Winans and John Seely Brown © 2005 |

15

2.1.2 DOCUMENT CENTRICITY

Documents (e.g. purchase orders, mortgage and legal documents, faxes and financial trades) are
used today in multi-party business interactions to capture interaction context/state and
constraints on the interaction, and to represent business information exchanged between
interaction participants when such interactions are conducted manually. It is this type of
granularity and grouping of information to which we refer in out-in interactions when we use the
term interaction document.

When in a Web Services context, XML/XSLT technologies are a natural fit for representing
interaction documents because:

 They can be used to express the schema of an interaction;

 They can be used to express business information;

 They can be used to describe constraints on the interaction, and on business
information;

 They can be extended with functionality implemented in a 3GL if necessary;

 XML namespaces provide a way to organize information and eliminate namespace
collisions, making it possible to track document amendments as the interaction
progresses through its life cycle; and

 The IT industry is galvanized around XML use for expressing information (e.g. Rosetta
Net, OASIS, etc.).

By using XML technologies to express context/state and complete business information in an
interaction, it becomes possible for a human participant to browse interaction information as
easily as a computer. This makes it more practical to involve both human beings and system
processes in an interaction. People can see a complete set of information and both understand
how they should function as a normal interaction participant, and as a mediator when problems
occur.

Additionally, using business information of the grouping and granularity that people usually
process as a heuristic for developing Web Services ultimately will result in a simpler Web Service
API’s and, consequently, simpler and possibly better performing supporting infrastructure (e.g.
adapters with coarse-grained service-oriented API’s that limit fine-grained information requests).

2.1.3 CONSTRAINT-BASED ORCHESTRATION

Constraints may be used to construct logical equivalents to the constructs of a procedural
workflow language. While a computer scientist would probably feel a certain degree of discomfort
over using non-deterministic technologies and techniques for business orchestration, there are
assumptions that can be made on the use of constraints and constraint solvers that simplify and
qualify their application to orchestration as follows:

• We are not likely to deal with systems of millions of constraints that require so much
time to solve that use of constraints becomes impractical;

• It is possible to bound the constraint domain just as people do when they act with

 Thomas B Winans and John Seely Brown © 2005 |

16

bounded rationality;

• There are reasonable and user-friendly ways to represent constraints to humans who will
participate in interactions as information providers, as well as debuggers of interactions;
and

• There are user-friendly ways to enable service interaction developers to map constraints
to services.

Given these assumptions, constraints could provide a compact means to script interaction flow in
a non-deterministic way that focuses considerably more upon information than it does application
protocols. This enables scalability, extensibility and specialization beyond the type of point-to-
point procedural scripting using directed graph workflow technologies like BPEL4WS, especially as
the complexity of business interactions increases and as interaction participants come and go.
Constraints even today are used to express business rules necessary to ensure the integrity of
business information being manipulated in the interaction. And they can be used to support
improvisational interfaces for human mediation when problems occur and exceptions are raised.
Such an interface would be analogous to an advanced debugger for multi-party business
interactions.

The orchestration component of a web services technology stack is the component that enables
execution of composite web service-based applications. We use the term interaction server to
refer to this component because it manages web services that map to the types of business
processes and capabilities a business institution would use to implement and govern its business
interactions both internally and externally. Essentially, an interaction server is a next generation
application server that is entirely based upon and manages the life cycles of constraint-oriented
composite web services.

Constraint orientation enables coordination that can be both statically and dynamically defined as
part of an interaction definition. Constraint-based flow (as opposed to a directed graph defining
one possible flow of perhaps many) enables an interaction to represent a family of workflows
that produce a common business outcome in the form of a composite document. The capability
to represent multiple flows simplifies and speeds the construction of web service-based
interactions both inside and outside of an enterprise.

2.2 New Runtime Technology Fabric

As we consider the computing fabric that has become common place in enterprises today, we can
quickly conclude that fabric components fall short of what is required to manage web service-
based application systems:

 Security more often than not targets the enterprise as defined today. While security
components make provision for authentication using credentials and provide the
convenience of single sign-on, considerable work must still be done to address XML
encryption/decryption as a function of roles played in a business interaction, protection
against application denial of service attacks, and so forth.

 Policy-based service management for business as well as network and technology
management and monitoring is not standard fare in enterprise management applications
and infrastructure. At present, the ability to dynamically late-bind to various transports as
a function of policy is uncommon if implemented at all.

 The ability to view the runtime state and context of work being performed and

 Thomas B Winans and John Seely Brown © 2005 |

17

participate in controlled and improvisational ways to manage exceptions or mediate in
some way presently is limited (consider a kind of runtime debugger as a desired
endpoint).

 Application servers that are given responsibility to manage the life cycle of functional
components and to administer the runtime services that these components require are
specific to application technology, and were not designed to be used natively for web
services. They were designed for use within the enterprise. Use of them outside of the
enterprise inappropriately would bring with them the cares and complexities of the
enterprise – there will be plenty of cares and concerns outside of the enterprise to be
managed without borrowing from other places.

 Workflow engines not designed for use with web services frequently are designed to
participate in enterprise units of work. In some cases, workflow products insist on playing
the role of TP Monitor. This would be inappropriate outside of the enterprise where there
is no single locus of control.

In addition to the deficiencies of enterprise fabric components, it is also important to note the
emergence of hardware accelerators for XML processing (e.g. XML Transformation, XML Content
Routing), XML Firewall and Security, and legacy system interoperability. While current day
enterprise fabric components perform a subset of the functions now implemented in hardware,
they were not necessarily designed to interoperate in a loosely coupled way with hardware
innovations as these emerge into the market.

Further still, it is important to highlight the lack of support for monitoring and controlling business
interactions at the business level that enterprise fabric components give. While it is possible to
correlate business activities through log entry correlation, this does not mean that doing so is
straightforward or easy to do. Some system management vendors are only now implementing
limited forms of such functionality relative to common enterprise application technologies and
applications today. Build-out of this functionality for use with web service-oriented platforms is
work in progress.

Googling the Internet for vendors who implement fabric components, and who might have
already implemented a full web services fabric provides a somewhat sobering (for CIOs) and/or
exciting (for entrepreneurs) status report of where the market is today relative to a complete
fabric for web services: many fabric components are emerging, but they have not yet been
woven together.

2.3 New Development Environment

Web services change the way applications are developed. The more traditional type of application
developed with Java and .NET (component- and object-based), or COBOL and PL/1 are typically
developed and their deployment centralized within an enterprise. A full-featured programming
environment supports application development as a function of procedural and object-based
components (known at design time) for deployment in specific technology stacks. Not so in a
web service context.

Applications in a web service context are composite or aggregate services. Myriad technology
stacks may be used to publish primitive web services for uses that span enterprise boundaries.
While we are seeing BPEL development environments that incorporate XML-based transformation
capabilities in them, it is important to note that there are plenty of other “application services”
that must be provided in the runtime and made accessible at design/construction time in order
for web service-oriented programming to become a reality. Such services include: thread

 Thomas B Winans and John Seely Brown © 2005 |

18

management, common memory management, XA and compensation-based transaction
management, the ability to manipulate information in a runtime context (is this some
combination of XSLT and Xquery?), and so forth. There is need for tools and frameworks that can
be used to expose web services using information and data sources that are not web service-
enabled. And there is need for frameworks such as portal frameworks that can be used to
consume web services and present the results of this consumption for rendering in the variety of
browser, rich media, and mobile device contexts becoming commonplace in today’s global
workplace.

Finally, as web service governance and policy management increase in their importance as web
service use increases, a repository and tools will be needed to capture such information as the
description of web services, their relationships with other web services, policies relating to them,
performance characterizations of web services relative to specific policies, and details of contexts
into which they have been deployed (with services to keep this information current).

2.4 Traditional IT “Norms” Will Be Challenged

With new ways to architect platforms and develop new applications, and with a new runtime
technology stack will undoubtedly come new developments that will challenge the common
wisdom of enterprise IT. Here are at least three:

 It is common for IT to identify applications within its infrastructure that serve as sources
of record for specific information types (e.g. a CRM system services as the source of
record for the definition of customer and all customer-related data). As composite
service-oriented applications are constructed, the source of record is likely to move closer
to the composite application to limit dependence on legacy applications and avoid the
expenditure of time and resources needed to perform information-based integration and
document construction.

 Use of legacy technology stacks to build both primitive and complex service-based
applications will (have to) be minimized to ensure the expected returns on web service-
related investments are realized. This means that a more stringent discipline will have to
be put into place regarding the architecture and design of new applications.

 The definition of enterprise will be challenged to the core. It certainly is commonplace to
find applications that authenticate against a database using some general username and
password pair simply because they exist within enterprise boundaries. Equally common is
the fact that, once authenticated, a user is authorized to see and do considerably more
than if the user were not an employee. The risk of such loose security is “minimal” only
because it is loose within enterprise firewall boundaries. Such practices must be fixed if
the benefits of web services are to be realized.

3. ORGANIZATIONAL IMPLICATIONS OF OUT-IN

Taking an out-in pov on web services has organizational as well as technology impact. Because
web service technology is an enabler of new business models, the impact on organization makes
sense. We note that the impact can be seen in at least the following areas: (1) users must be
viewed as global citizens within a virtual enterprise, thereby minimizing the distinction between
internal and external users; (2) IT must equip itself to implement new service development and
operational models; and (3) web services provide a mechanism with which an organization can
implement a technology life cycle management strategy.

 Thomas B Winans and John Seely Brown © 2005 |

19

3.1 Global Citizenry

Security is at the core of how users are managed in any information system. Most enterprises
have some form of security – even if this is a firewall and simple database authentication
mechanism. Larger enterprises typically use some form of LDAP Directory Service to manage
users for email purposes, support single sign-on, etc. Equally safe to say is that most enterprises
do not go much beyond this point. It would be very unusual to find enterprise security so built
out that it is possible to restrict visibility to data to a sub-document level as a function of a user
role, or to manage access control lists to a business functional level. Yet it is precisely the fact
that security has not been built out to this degree that precludes a company from behaving
globally. Citizens of a so-called global company are not global citizens at all. Instead, they are
organized into regional groups – each with its own Microsoft Active Directory or regional LDAP
directory – with permissions assigned at the regional level. Semantics of role definitions are
inconsistent across the company – so it would be very challenging to establish uniform corporate
role definitions and access control lists.

Taking an out-in pov on web services demands that an enterprise treat employees in the same
fashion as an external partner: each is a person that can interact with or act on behalf of the
enterprise as a function of the roles that the user can play. Roles determine security policies
associated with business services that can be invoked, and information that can be seen and/or
published. Roles may also determine quality of service-related policies that will govern business
interactions as a function of specific roles. Infrastructure – like a global directory service – must
be installed and maintained, and information must be secured to a business service level
(including the information set that a business service manipulates).

What is interesting about web services is that they provide the means to take greater control of
security to a business functional level. They name business service interfaces and provide a
metadata description of the information set they manipulate. Assuming canonical process and
information models (a big assumption, but achievable), governance policies (including security)
can be applied at the web service level to make global citizenship an achievable goal.

3.2 New IT Development and Operational Models – the Benefit of Improved
Governance

IT plays many roles in enterprises today. In some companies, IT equates to network, desktop,
and business information system management – with separate Engineering, Support, and Service
organizations that manage business relating to corporate software-based products and services.
In other enterprises, IT organizations do all of the above.

What is commonplace in IT regardless of the organizational model in place is that infrastructure
is not usually so well managed that actual returns on IT-related investment can be reconciled to
projected returns, the business can feel confident about guaranteeing its partnering capabilities
with service level agreements, and IT can justify standing against the business urge to cut IT
budget when cost saving policies must be implemented.

Consider, for a moment, an IT organization – including network, desktop, and business
information system management together with Engineering, Support, and Service functions
relating to corporate software-based products and services – that runs itself as a software
product and service provider business5. The word business suggests an operating model that
requires the business to formalize its definition of products and services that can be provided out

5 Credit goes to Michael Chang of Nissan North America for taking this point of view to an IT operational model extreme.

 Thomas B Winans and John Seely Brown © 2005 |

20

to the desktop (e.g. the desktop itself, the network and phone system connections, software
productivity applications and update service, security credential administration, provisioning of
email, access to business critical services/applications and information sets, and product
support/help desk). Assume the business model is based around the consumer as a service
subscriber that receives a monthly invoice for each product/service used during the month, with
rollup on a cost center basis. The business must be able to present a catalog of products and
services that an employee requires/can afford to consume on a recurring basis; and it must be
able to track product/service use for billing purposes. This requires IT development efforts to go
well beyond its common stop point (minimal documentation, deployment only with the help of
J2EE gods, can monitor use by sifting through log files – but this requires significant effort to
routinely report business service-specific activities).

Whether IT formally bills cost centers in the form of some chargeback model or not, taking a
service-oriented view of their business across all the functions that IT provisions establishes
traceability to actual costs to develop and maintain products and services. This visibility identifies
where IT infrastructure must be more rigorously managed to control expenses. It identifies
where cost-cutting policies will have negative impact, and where it is justified. It identifies areas
requiring investment. It identifies holes in funding strategies relating to the transfer of control to
IT of products and services developed outside of IT. It justifies why IT should hold the business
accountable for developing a complete product/service, including the operational hardening and
build-out necessary to incorporate it as a well-formed business fabric component. In fact, it
defines the core components of the corporate business service technology fabric, and essentially
articulates the critical importance of a unified service and technology strategy across the
company – whether actual or virtual.

Taking an out-in pov on web services suggests new IT development and operational models that
are directly traceable to business value. It also packages business services in a way that enables
the business to combine and recombine services and directly enables innovations in business
practices and agility in business processes. Such packaging also permits incremental change (in
the form of policies, or in the deprecation or replacement or addition of business services). In
fact, an out-in pov provides a framework for sustained innovation in the face of changing
business practices and models [5].

3.3 Technology Life Cycle Management Strategy

Technology life cycle management is difficult. It often comes in the form of a big bang
replacement of a mission critical application or major infrastructure upgrade that never seems to
cost less than or equal to initial estimates, never seems to be as “out of the box” as originally
hoped, and never completes within a reasonable time distribution away from the original
estimate – delivering to full expectations regarding functionality and quality. And it would be
naïve to believe that simply adopting a web services pov would magically make technology life
cycle management easy. It won’t. BUT it does offer a strategy to manage it.

Third generation programming languages since the 1980s have included constructs for defining
software interfaces separate from implementations of and compliance with these interfaces. To
be fair, some of the rationale behind introduction of these interface constructs was to circumvent
perceived limitations of object inheritance models. But another recognized benefit of interfaces
was correctly noted to be the enablement to replace interface implementations without impacting
code dependent upon having an implementation to use. Web services enable the same type of
encapsulation at a technology level because it they are technology stack agnostic. Furthermore,
web service frameworks make it possible to introduce interceptors that can participate in web
service invocations using a kind of software delegate pattern. Interceptors can be positioned
before or after actual web service invocation as a means to implement policy enforcement,

 Thomas B Winans and John Seely Brown © 2005 |

21

specialized logging and monitoring (including billing for web service use), and so forth.

The ability to be technology agnostic and the ability to incorporate interceptors surrounding web
service invocation form the basis of a technology life cycle management strategy. Consider the
following example as a simple explanation of this point.

Telecommunication companies often have many billing systems that do far more than the “billing
system” name suggests. In fact, a billing system often is involved in product/service order
management and provisioning, workforce management, call detail record rating and statement
generation, and customer support. It is clear to see that such a system is very critical to the
business – and no sane person would ever replace such a critical system in a big bang fashion. In
fact, one can argue that the only rational way to replace such a system would be to buy or
implement a functional replacement for the system, run the new system in parallel with the old
system for some period of time (say between 1-2 years) to populate the new system with
accurate information and verify rating and statement generation and other key functions are
properly working, and then turn off the old system except for historical purposes.

How could this be accomplished with web services? One possibility could be the following:

[1] Encapsulate existing key business functions as web services;

[2] Develop new business services that corresponds to web services produced in [1] that
“listen” as interceptors whenever business services in [1] are invoked;

[3] Deploy web services in [2] as possible/sensible, compare information produced in [2] to
information produced in [1] for validity;

[4] Complete [2]-[3];

[5] Run the business on business services in [1] until entirely confident that [2] is reliable
and the business can be run on new business services;

[6] Run the business on [2], making business services in [1] interceptors when [2] business
services are invoked, and as a backup;

[7] Decommission [1] and the corresponding legacy application (perhaps except for historical
purposes).

To be fair, there are ugly details that cannot be seen in the process outlined above caused by the
inability to be entirely technology agnostic in a technology migration like the one described here.
But these details can be managed. And the end result of migrating to a set of business services
exposed as web services is that subsequent life cycle management is likely to be considerably
easier based upon the assumption that technology agnostic interfaces are now in place.

4. BENEFITS OF OUT-IN

Taking an out-in pov of web services implies a willingness to think and act in a globally enabled
fashion. According to this pov:

 The distinction of internal vs. external users of business services is replaced with a global
user concept supported with software and hardware infrastructure that secures the
enterprise, whether virtual or physical, and enables role and policy-driven management
of user interactions.

 Thomas B Winans and John Seely Brown © 2005 |

22

 Technology business services are well defined and technology agnostic.

 Business services are defined according to a common meta model such that it is possible
to reconcile semantic impedance mismatches between partners using standardized
infrastructure, though this may be semi-manually accomplished for some time yet.

 The ability to view business services as web services (homogeneous from a technology
point of view) supports on-going innovation in the face of changes to business practices
and models – and such visibility provides opportunity to measure business performance
and effectiveness as a function of configurable (possibly customer specific) policies.

Consequently, the out-in pov leads to managed collaboration between loosely coupled business
models without inappropriately circumventing or being limited by necessary enterprise edge-level
technologies. Because the technology heterogeneity problems are localizable, the pov enables
enterprises to reconsider their boundaries – paving the way to form loosely coupled communities
of practice more easily and on an as-needed basis. And while the coupling is loose, the ability to
govern both design time and runtime use of business services suggests a level of robustness that
exceeds many of the enterprise information systems in place today.

5. DETRIMENTS OF OUT-IN

To be certain, moving to any web services-oriented point of view will be painful. The web
services community is hardly unified in its point of view of how web services should be
implemented, what the important standards are, the urgency of defining
stable/implementable/well formed (especially in an operational sense) standards, the definition of
a complete web services technology stack, and so forth. Change at the technology level is and
will continue to be the norm for quite some time. Change will certainly cost money and other
resources in order to keep systems web services interoperable as web service standards and
technologies mature. While the belief that legacy applications can provision the first generation of
business services, the cost of discovering and surfacing web services using these applications will
test the patience from the boardroom to the network operation center.

So where does a company start?

Probably the very best advice is to start at the edge of the business [6]. Before it makes sense to
aggressively pursue a web services strategy, a business must understand what its business
model is, and what its key business services are. Remember that these business services are not
dependent upon the kinds of business applications run in the enterprise IT department – rather,
the relationship should be the other way around. Perhaps this start point is a hint concerning
which one of the two points of view discussed in this paper should be adopted.

6. SUMMARY

Web Services provide us with an opportunity to conduct business in ways that scale beyond our
current notion of business enterprise. Because there are different points of view about how the
potential of Web Services architecturally can be realized, we identified the key concepts of unit of
work, work granularity and orchestration as useful when evaluating approaches to developing
service-oriented architectures for Web Services. In particular, these concepts, which are
abbreviated as UoW, were used to compare and contrast the in-out and out-in points of view on
Web Service-oriented architectures to show: (a) while both points of view can lead to the
development of service-oriented architectures, the architectures will be substantially different;
and (b) the assumption that current in-out enterprise architectures can be extended to realize
out-in goals may be misguided. (b), in particular, is a very controversial position to take. Equally

 Thomas B Winans and John Seely Brown © 2005 |

23

polarizing is the belief that a new out-in architecture will result in the demise of new enterprise
application development as we have come to know it.

Figure 2

It is crucial to examine the key distinctions between the in-out and out-in povs, shown in the
figure above, we begin to identify what is architecturally important when constructing web
service-oriented platforms and applications, and how enterprises can leverage their current
infrastructure to participate in multi-party business interactions. The out-in pov could lead us to
an architecture that not only will generalize well as loosely coupled communities of practice join
together to conduct business, but also will specialize into the enterprise in a way that may lead to
the refactoring and simplification of current enterprise architectures.

 Thomas B Winans and John Seely Brown © 2005 |

24

7. BIBLIOGRAPHY

[1] Hagel III, J. and J.S. Brown, Service Grids: The Missing Layer in Web Services. Release
1.0. Edventure Holdings, Inc., New York, Dec 23, 2002, 20:II:I-32.

[2] Perry, D. and A. Wolf, Foundations for the Study of Software Architectures. ACM
SIGSOFT Software Engineering Notes, 1992.

[3] http://www.opengroup.org/sib/details.tpl?id=C193, Apr 2005.

[4] Carr, N., IT Doesn’t Matter, Harvard Business Review, May 2003.

[5] Does IT Matter? An HBR Debate. Harvard Business Review, June 2003.

[6] Hagel III, J. and J.S. Brown, Break on Through to the Other Side: A Missing Link in
Redefining the Enterprise. http://www.johnhagel.com/paper_breakonthrough.pdf, 2002.

8. ACKNOWLEDGEMENTS

An earlier version of this paper was developed in 4Q2003 in collaboration between Tom Winans,
John Seely Brown and Nancy Martin. This version updates the thinking set down then based on
research in the web services marketplace from 4Q2003 to 1Q2005.

Thanks are given to Stan Raatz, Ken West, Roman Stanek, Radovan Janecek and Adam Blum for
their insights and discussion relating to the development of the first version of this paper.

9. AUTHORS

Tom Winans is an IT management and technology consultant. He assists clients
with pre-investment technology diligence, post investment portfolio management,
development and implementation of organizational and software production
methodologies, distributed service-based application architectures, and
performance of project triage.

Tom has worked and consulted in the telecommunication, manufacturing, and IT industries for
over 20 years. Tom can be reached through his web site: http://www.concentrum.com.

Dr. John Seely Brown (JSB) formerly served as the Chief Scientist of Xerox
Corporation and the Director of its Palo Alto Research Center (PARC). He was
deeply involved in the management of radical innovation and in the formation of
corporate strategy and strategic positioning of Xerox as The Document Company.

Today, JSB serves as “Chief of Confusion”, helping people ask the right questions,
trying to make a difference through his work- speaking, writing and teaching. He can be reached
through his web site: http://www.johnseelybrown.com.

http://www.opengroup.org/sib/details.tpl?id=C193
http://www.johnhagel.com/paper_breakonthrough.pdf
http://www.concentrum.com/
http://www.johnseelybrown.com/

	New Perspective On Web Services
	1. TECHNICAL DISTINCTIONS BETWEEN OUT-IN AND IN-OUT
	1.1 Transaction Management
	1.1.1 EXCEPTION HANDLING

	1.2 Activity Granularity
	1.3 Orchestration

	2. ARCHITECTURE IMPLICATIONS OF OUT-IN
	2.1 New Way to Architect
	2.1.1 COMPENSATION AND EXCEPTION HANDLING
	2.1.2 DOCUMENT CENTRICITY
	2.1.3 CONSTRAINT-BASED ORCHESTRATION

	2.2 New Runtime Technology Fabric
	2.3 New Development Environment
	2.4 Traditional IT “Norms” Will Be Challenged

	3. ORGANIZATIONAL IMPLICATIONS OF OUT-IN
	3.1 Global Citizenry
	3.2 New IT Development and Operational Models – the Benefit of Improved Governance
	3.3 Technology Life Cycle Management Strategy

	4. BENEFITS OF OUT-IN
	5. DETRIMENTS OF OUT-IN
	6. SUMMARY
	 7. BIBLIOGRAPHY
	8. ACKNOWLEDGEMENTS
	9. AUTHORS

